Fixed Point Quantization of Deep Convolutional Networks

نویسندگان

  • Darryl Dexu Lin
  • Sachin S. Talathi
  • V. Sreekanth Annapureddy
چکیده

In recent years increasingly complex architectures for deep convolution networks (DCNs) have been proposed to boost the performance on image recognition tasks. However, the gains in performance have come at a cost of substantial increase in computation and model storage resources. Fixed point implementation of DCNs has the potential to alleviate some of these complexities and facilitate potential deployment on embedded hardware. In this paper, we propose a quantizer design for fixed point implementation of DCNs. We formulate and solve an optimization problem to identify optimal fixed point bit-width allocation across DCN layers. Our experiments show that in comparison to equal bitwidth settings, the fixed point DCNs with optimized bit width allocation offer> 20% reduction in the model size without any loss in accuracy on CIFAR-10 benchmark. We also demonstrate that fine-tuning can further enhance the accuracy of fixed point DCNs beyond that of the original floating point model. In doing so, we report a new state-of-the-art fixed point performance of 6.78% error-rate on CIFAR-10 benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Networks with Reduced Numerical Precision Weights and Activation

Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memo...

متن کامل

Quantized Memory-Augmented Neural Networks

Memory-augmented neural networks (MANNs) refer to a class of neural network models equipped with external memory (such as neural Turing machines and memory networks). These neural networks outperform conventional recurrent neural networks (RNNs) in terms of learning long-term dependency, allowing them to solve intriguing AI tasks that would otherwise be hard to address. This paper concerns the ...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Hierarchical Compression of Deep Convolutional Neural Networks on Large Scale Visual Recognition for Mobile Applications

This paper present hierarchical compression scheme in deep convolutional neural networks (DCNN) on the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) for mobile devices. In hierarchical compression, we reduce the size of parameters and layers in VGG16 and GoogLeNet by using the iterative synapse pruning and grouping and quantization schemes hierarchically. We use the own simulation ...

متن کامل

Overcoming Challenges in Fixed Point Training of Deep Convolutional Networks

It is known that training deep neural networks, in particular, deep convolutional networks, with aggressively reduced numerical precision is challenging. The stochastic gradient descent algorithm becomes unstable in the presence of noisy gradient updates resulting from arithmetic with limited numeric precision. One of the wellaccepted solutions facilitating the training of low precision fixed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016