Fixed Point Quantization of Deep Convolutional Networks
نویسندگان
چکیده
In recent years increasingly complex architectures for deep convolution networks (DCNs) have been proposed to boost the performance on image recognition tasks. However, the gains in performance have come at a cost of substantial increase in computation and model storage resources. Fixed point implementation of DCNs has the potential to alleviate some of these complexities and facilitate potential deployment on embedded hardware. In this paper, we propose a quantizer design for fixed point implementation of DCNs. We formulate and solve an optimization problem to identify optimal fixed point bit-width allocation across DCN layers. Our experiments show that in comparison to equal bitwidth settings, the fixed point DCNs with optimized bit width allocation offer> 20% reduction in the model size without any loss in accuracy on CIFAR-10 benchmark. We also demonstrate that fine-tuning can further enhance the accuracy of fixed point DCNs beyond that of the original floating point model. In doing so, we report a new state-of-the-art fixed point performance of 6.78% error-rate on CIFAR-10 benchmark.
منابع مشابه
ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Networks with Reduced Numerical Precision Weights and Activation
Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memo...
متن کاملQuantized Memory-Augmented Neural Networks
Memory-augmented neural networks (MANNs) refer to a class of neural network models equipped with external memory (such as neural Turing machines and memory networks). These neural networks outperform conventional recurrent neural networks (RNNs) in terms of learning long-term dependency, allowing them to solve intriguing AI tasks that would otherwise be hard to address. This paper concerns the ...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملHierarchical Compression of Deep Convolutional Neural Networks on Large Scale Visual Recognition for Mobile Applications
This paper present hierarchical compression scheme in deep convolutional neural networks (DCNN) on the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) for mobile devices. In hierarchical compression, we reduce the size of parameters and layers in VGG16 and GoogLeNet by using the iterative synapse pruning and grouping and quantization schemes hierarchically. We use the own simulation ...
متن کاملOvercoming Challenges in Fixed Point Training of Deep Convolutional Networks
It is known that training deep neural networks, in particular, deep convolutional networks, with aggressively reduced numerical precision is challenging. The stochastic gradient descent algorithm becomes unstable in the presence of noisy gradient updates resulting from arithmetic with limited numeric precision. One of the wellaccepted solutions facilitating the training of low precision fixed p...
متن کامل